Efficient Sixth-Order Nonlinear Equation Solvers Free from Derivative
نویسندگان
چکیده
The construction of some without memory efficient sixth-order iterative schemes for solving univariate nonlinear equations is presented. Per iteration, the novel methods comprise four evaluations of the function, while they are free from derivative calculations. The application of such iterative methods is appeared, when the cost of derivative evaluation is expensive. We analytically show the sixth-order convergence of the contributed schemes and finally numerical examples are considered to confirm their rapid convergence. AMS classification: 65H05
منابع مشابه
Seventh-order iterative algorithm free from second derivative for solving algebraic nonlinear equations
متن کامل
Finding simple roots by seventh- and eighth-order derivative-free methods
Nonlinear equation solving by without memory iterative methods is taken into account in the present research. Recently, Khattri and Argyros in [S.K. Khattri, I.K. Argyros, Sixth order derivative free family of iterative methods, Appl. Math. Comput. 217 (2011), 5500-5507], proposed a sixth-order family of derivative-free methods including four function evaluations per full cycle to reach the ind...
متن کاملA Modified Newton-Type Method with Sixth-Order Convergence for Solving Nonlinear Equations
In this paper, we present and analyze a sixth-order convergent method for solving nonlinear equations. The method is free from second derivatives and permits f'(x)=0 in some points. It requires three evaluations of the given function and two evaluations of its derivative in each step. Some numerical examples illustrate that the presented method is more efficient and performs better than classic...
متن کاملTwo new three and four parametric with memory methods for solving nonlinear equations
In this study, based on the optimal free derivative without memory methods proposed by Cordero et al. [A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa, Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation, Mathematical and Computer Modeling. 57 (2013) 1950-1956], we develop two new iterative with memory methods for solving a nonline...
متن کاملTHIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS
In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013